Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.

Identifieur interne : 002F98 ( Main/Exploration ); précédent : 002F97; suivant : 002F99

An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.

Auteurs : Chia-Chi Hsu [Taïwan] ; Yu-Lin Chung ; Tien-Chih Chen ; Yu-Ling Lee ; Yi-Tzu Kuo ; Wen-Chieh Tsai ; Yu-Yun Hsiao ; Yun-Wen Chen ; Wen-Luan Wu ; Hong-Hwa Chen

Source :

RBID : pubmed:21208460

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.

RESULTS

We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.

CONCLUSION

Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the Phalaenopsis genome and advances our knowledge thereof.


DOI: 10.1186/1471-2229-11-3
PubMed: 21208460
PubMed Central: PMC3027094


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.</title>
<author>
<name sortKey="Hsu, Chia Chi" sort="Hsu, Chia Chi" uniqKey="Hsu C" first="Chia-Chi" last="Hsu">Chia-Chi Hsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chung, Yu Lin" sort="Chung, Yu Lin" uniqKey="Chung Y" first="Yu-Lin" last="Chung">Yu-Lin Chung</name>
</author>
<author>
<name sortKey="Chen, Tien Chih" sort="Chen, Tien Chih" uniqKey="Chen T" first="Tien-Chih" last="Chen">Tien-Chih Chen</name>
</author>
<author>
<name sortKey="Lee, Yu Ling" sort="Lee, Yu Ling" uniqKey="Lee Y" first="Yu-Ling" last="Lee">Yu-Ling Lee</name>
</author>
<author>
<name sortKey="Kuo, Yi Tzu" sort="Kuo, Yi Tzu" uniqKey="Kuo Y" first="Yi-Tzu" last="Kuo">Yi-Tzu Kuo</name>
</author>
<author>
<name sortKey="Tsai, Wen Chieh" sort="Tsai, Wen Chieh" uniqKey="Tsai W" first="Wen-Chieh" last="Tsai">Wen-Chieh Tsai</name>
</author>
<author>
<name sortKey="Hsiao, Yu Yun" sort="Hsiao, Yu Yun" uniqKey="Hsiao Y" first="Yu-Yun" last="Hsiao">Yu-Yun Hsiao</name>
</author>
<author>
<name sortKey="Chen, Yun Wen" sort="Chen, Yun Wen" uniqKey="Chen Y" first="Yun-Wen" last="Chen">Yun-Wen Chen</name>
</author>
<author>
<name sortKey="Wu, Wen Luan" sort="Wu, Wen Luan" uniqKey="Wu W" first="Wen-Luan" last="Wu">Wen-Luan Wu</name>
</author>
<author>
<name sortKey="Chen, Hong Hwa" sort="Chen, Hong Hwa" uniqKey="Chen H" first="Hong-Hwa" last="Chen">Hong-Hwa Chen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21208460</idno>
<idno type="pmid">21208460</idno>
<idno type="doi">10.1186/1471-2229-11-3</idno>
<idno type="pmc">PMC3027094</idno>
<idno type="wicri:Area/Main/Corpus">002F58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F58</idno>
<idno type="wicri:Area/Main/Curation">002F58</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F58</idno>
<idno type="wicri:Area/Main/Exploration">002F58</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.</title>
<author>
<name sortKey="Hsu, Chia Chi" sort="Hsu, Chia Chi" uniqKey="Hsu C" first="Chia-Chi" last="Hsu">Chia-Chi Hsu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.</nlm:affiliation>
<country xml:lang="fr">Taïwan</country>
<wicri:regionArea>Department of Life Sciences, National Cheng Kung University, Tainan</wicri:regionArea>
<wicri:noRegion>Tainan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chung, Yu Lin" sort="Chung, Yu Lin" uniqKey="Chung Y" first="Yu-Lin" last="Chung">Yu-Lin Chung</name>
</author>
<author>
<name sortKey="Chen, Tien Chih" sort="Chen, Tien Chih" uniqKey="Chen T" first="Tien-Chih" last="Chen">Tien-Chih Chen</name>
</author>
<author>
<name sortKey="Lee, Yu Ling" sort="Lee, Yu Ling" uniqKey="Lee Y" first="Yu-Ling" last="Lee">Yu-Ling Lee</name>
</author>
<author>
<name sortKey="Kuo, Yi Tzu" sort="Kuo, Yi Tzu" uniqKey="Kuo Y" first="Yi-Tzu" last="Kuo">Yi-Tzu Kuo</name>
</author>
<author>
<name sortKey="Tsai, Wen Chieh" sort="Tsai, Wen Chieh" uniqKey="Tsai W" first="Wen-Chieh" last="Tsai">Wen-Chieh Tsai</name>
</author>
<author>
<name sortKey="Hsiao, Yu Yun" sort="Hsiao, Yu Yun" uniqKey="Hsiao Y" first="Yu-Yun" last="Hsiao">Yu-Yun Hsiao</name>
</author>
<author>
<name sortKey="Chen, Yun Wen" sort="Chen, Yun Wen" uniqKey="Chen Y" first="Yun-Wen" last="Chen">Yun-Wen Chen</name>
</author>
<author>
<name sortKey="Wu, Wen Luan" sort="Wu, Wen Luan" uniqKey="Wu W" first="Wen-Luan" last="Wu">Wen-Luan Wu</name>
</author>
<author>
<name sortKey="Chen, Hong Hwa" sort="Chen, Hong Hwa" uniqKey="Chen H" first="Hong-Hwa" last="Chen">Hong-Hwa Chen</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>AT Rich Sequence (genetics)</term>
<term>Base Sequence (MeSH)</term>
<term>Cell Nucleus (genetics)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Artificial, Bacterial (genetics)</term>
<term>DNA, Chloroplast (genetics)</term>
<term>Databases, Nucleic Acid (MeSH)</term>
<term>Genetic Markers (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Minisatellite Repeats (genetics)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Orchidaceae (genetics)</term>
<term>Polymerase Chain Reaction (MeSH)</term>
<term>Sequence Analysis, DNA (methods)</term>
<term>Species Specificity (MeSH)</term>
<term>Synteny (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des chloroplastes (génétique)</term>
<term>Analyse de séquence d'ADN (méthodes)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Bases de données d'acides nucléiques (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes artificiels de bactérie (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Génome végétal (génétique)</term>
<term>Marqueurs génétiques (MeSH)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Orchidaceae (génétique)</term>
<term>Réaction de polymérisation en chaîne (MeSH)</term>
<term>Répétitions minisatellites (génétique)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Synténie (génétique)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Séquence riche en AT (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Chloroplast</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>AT Rich Sequence</term>
<term>Cell Nucleus</term>
<term>Chromosomes, Artificial, Bacterial</term>
<term>Genome, Plant</term>
<term>Minisatellite Repeats</term>
<term>Orchidaceae</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des chloroplastes</term>
<term>Chromosomes artificiels de bactérie</term>
<term>Génome végétal</term>
<term>Noyau de la cellule</term>
<term>Orchidaceae</term>
<term>Répétitions minisatellites</term>
<term>Synténie</term>
<term>Séquence riche en AT</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chromosome Mapping</term>
<term>Databases, Nucleic Acid</term>
<term>Genetic Markers</term>
<term>Molecular Sequence Annotation</term>
<term>Molecular Sequence Data</term>
<term>Polymerase Chain Reaction</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Bases de données d'acides nucléiques</term>
<term>Cartographie chromosomique</term>
<term>Données de séquences moléculaires</term>
<term>Marqueurs génétiques</term>
<term>Réaction de polymérisation en chaîne</term>
<term>Spécificité d'espèce</term>
<term>Séquence nucléotidique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the Phalaenopsis genome and advances our knowledge thereof.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21208460</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>04</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<PubDate>
<Year>2011</Year>
<Month>Jan</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.</ArticleTitle>
<Pagination>
<MedlinePgn>3</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-11-3</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phalaenopsis orchids are popular floral crops, and development of new cultivars is economically important to floricultural industries worldwide. Analysis of orchid genes could facilitate orchid improvement. Bacterial artificial chromosome (BAC) end sequences (BESs) can provide the first glimpses into the sequence composition of a novel genome and can yield molecular markers for use in genetic mapping and breeding.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We used two BAC libraries (constructed using the BamHI and HindIII restriction enzymes) of Phalaenopsis equestris to generate pair-end sequences from 2,920 BAC clones (71.4% and 28.6% from the BamHI and HindIII libraries, respectively), at a success rate of 95.7%. A total of 5,535 BESs were generated, representing 4.5 Mb, or about 0.3% of the Phalaenopsis genome. The trimmed sequences ranged from 123 to 1,397 base pairs (bp) in size, with an average edited read length of 821 bp. When these BESs were subjected to sequence homology searches, it was found that 641 (11.6%) were predicted to represent protein-encoding regions, whereas 1,272 (23.0%) contained repetitive DNA. Most of the repetitive DNA sequences were gypsy- and copia-like retrotransposons (41.9% and 12.8%, respectively), whereas only 10.8% were DNA transposons. Further, 950 potential simple sequence repeats (SSRs) were discovered. Dinucleotides were the most abundant repeat motifs; AT/TA dimer repeats were the most frequent SSRs, representing 253 (26.6%) of all identified SSRs. Microsynteny analysis revealed that more BESs mapped to the whole-genome sequences of poplar than to those of grape or Arabidopsis, and even fewer mapped to the rice genome. This work will facilitate analysis of the Phalaenopsis genome, and will help clarify similarities and differences in genome composition between orchids and other plant species.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Using BES analysis, we obtained an overview of the Phalaenopsis genome in terms of gene abundance, the presence of repetitive DNA and SSR markers, and the extent of microsynteny with other plant species. This work provides a basis for future physical mapping of the Phalaenopsis genome and advances our knowledge thereof.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hsu</LastName>
<ForeName>Chia-Chi</ForeName>
<Initials>CC</Initials>
<AffiliationInfo>
<Affiliation>Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chung</LastName>
<ForeName>Yu-Lin</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Tien-Chih</ForeName>
<Initials>TC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Yu-Ling</ForeName>
<Initials>YL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kuo</LastName>
<ForeName>Yi-Tzu</ForeName>
<Initials>YT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Wen-Chieh</ForeName>
<Initials>WC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hsiao</LastName>
<ForeName>Yu-Yun</ForeName>
<Initials>YY</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Yun-Wen</ForeName>
<Initials>YW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Wen-Luan</ForeName>
<Initials>WL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Hong-Hwa</ForeName>
<Initials>HH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HN176659</AccessionNumber>
<AccessionNumber>HN176660</AccessionNumber>
<AccessionNumber>HN176661</AccessionNumber>
<AccessionNumber>HN176662</AccessionNumber>
<AccessionNumber>HN176663</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018742">DNA, Chloroplast</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005819">Genetic Markers</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D020856" MajorTopicYN="N">AT Rich Sequence</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022202" MajorTopicYN="N">Chromosomes, Artificial, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018742" MajorTopicYN="N">DNA, Chloroplast</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030561" MajorTopicYN="N">Databases, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005819" MajorTopicYN="N">Genetic Markers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018598" MajorTopicYN="N">Minisatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029595" MajorTopicYN="N">Orchidaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016133" MajorTopicYN="N">Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>07</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>01</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>1</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21208460</ArticleId>
<ArticleId IdType="pii">1471-2229-11-3</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-11-3</ArticleId>
<ArticleId IdType="pmc">PMC3027094</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 2005 Sep;59(1):53-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16217601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):279-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:423</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Dec;127(4):1390-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11743079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):472-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytogenet Genome Res. 2005;110(1-4):462-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16093699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Sep;20(9):487-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2007 Apr;114(6):1081-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17287974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18234080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Feb;140(2):401-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16384910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2005 Oct;27(19):1517-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16231226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2006 Dec;114(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17016688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2005 Oct;274(3):197-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16025250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2006;6:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16836766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2007 Jul;16(14):2834-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17614897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17562019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Aug;67(6):581-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18521706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jan;16(1):140-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16344555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Oct 17;302(5644):437-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14564006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 Mar;281(3):273-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Jul;45(7):831-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15295066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):18-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15888674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1063-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Feb;13(2):51-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18262819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2004 Oct 29;359(1450):1523-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2005 Jul;46(7):1125-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15890679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(5):719-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 30;448(7157):1042-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 2003 Feb;106(3):411-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2006 Jul;276(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16703363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1998 Mar;8(3):175-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9521921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2006 Feb;21(2):64-5; author reply 65-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Jan 1;32(Database issue):D360-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14681434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Taïwan</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Hong Hwa" sort="Chen, Hong Hwa" uniqKey="Chen H" first="Hong-Hwa" last="Chen">Hong-Hwa Chen</name>
<name sortKey="Chen, Tien Chih" sort="Chen, Tien Chih" uniqKey="Chen T" first="Tien-Chih" last="Chen">Tien-Chih Chen</name>
<name sortKey="Chen, Yun Wen" sort="Chen, Yun Wen" uniqKey="Chen Y" first="Yun-Wen" last="Chen">Yun-Wen Chen</name>
<name sortKey="Chung, Yu Lin" sort="Chung, Yu Lin" uniqKey="Chung Y" first="Yu-Lin" last="Chung">Yu-Lin Chung</name>
<name sortKey="Hsiao, Yu Yun" sort="Hsiao, Yu Yun" uniqKey="Hsiao Y" first="Yu-Yun" last="Hsiao">Yu-Yun Hsiao</name>
<name sortKey="Kuo, Yi Tzu" sort="Kuo, Yi Tzu" uniqKey="Kuo Y" first="Yi-Tzu" last="Kuo">Yi-Tzu Kuo</name>
<name sortKey="Lee, Yu Ling" sort="Lee, Yu Ling" uniqKey="Lee Y" first="Yu-Ling" last="Lee">Yu-Ling Lee</name>
<name sortKey="Tsai, Wen Chieh" sort="Tsai, Wen Chieh" uniqKey="Tsai W" first="Wen-Chieh" last="Tsai">Wen-Chieh Tsai</name>
<name sortKey="Wu, Wen Luan" sort="Wu, Wen Luan" uniqKey="Wu W" first="Wen-Luan" last="Wu">Wen-Luan Wu</name>
</noCountry>
<country name="Taïwan">
<noRegion>
<name sortKey="Hsu, Chia Chi" sort="Hsu, Chia Chi" uniqKey="Hsu C" first="Chia-Chi" last="Hsu">Chia-Chi Hsu</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21208460
   |texte=   An overview of the Phalaenopsis orchid genome through BAC end sequence analysis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21208460" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020